Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.244
Filtrar
1.
Philos Trans R Soc Lond B Biol Sci ; 379(1899): 20220388, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38368932

RESUMO

Niemann-Pick type C (NPC) disease is a rare progressive lysosomal lipid storage disorder that manifests with a heterogeneous spectrum of clinical syndromes, including visceral, neurological and psychiatric symptoms. This monogenetic autosomal recessive disease is largely caused by mutations in the NPC1 gene, which controls intracellular lipid homeostasis. Vesicle-mediated endo-lysosomal lipid trafficking and non-vesicular lipid exchange via inter-organelle membrane contact sites are both regulated by the NPC1 protein. Loss of NPC1 function therefore triggers intracellular accumulation of diverse lipid species, including cholesterol, glycosphingolipids, sphingomyelin and sphingosine. The NPC1-mediated dysfunction of lipid transport has severe consequences for all brain cells, leading to neurodegeneration. Besides the cell-autonomous contribution of neuronal NPC1, aberrant NPC1 signalling in other brain cells is critical for the pathology. We discuss here the importance of endo-lysosomal dysfunction and a tight crosstalk between neurons, oligodendrocytes, astrocytes and microglia in NPC pathology. We strongly believe that a cell-specific rescue may not be sufficient to counteract the severity of the NPC pathology, but targeting common mechanisms, such as endo-lysosomal and lipid trafficking dysfunction, may ameliorate NPC pathology. This article is part of a discussion meeting issue 'Understanding the endo-lysosomal network in neurodegeneration'.


Assuntos
Doença de Niemann-Pick Tipo C , Humanos , Doença de Niemann-Pick Tipo C/genética , Doença de Niemann-Pick Tipo C/metabolismo , Doença de Niemann-Pick Tipo C/patologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neurônios , Colesterol/metabolismo , Lisossomos/metabolismo , Lisossomos/patologia
2.
Philos Trans R Soc Lond B Biol Sci ; 379(1899): 20220517, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38368938

RESUMO

Parkinson's disease is a progressive neurological disorder, characterized by prominent movement dysfunction. The past two decades have seen a rapid expansion of our understanding of the genetic basis of Parkinson's, initially through the identification of monogenic forms and, more recently, through genome-wide association studies identifying common risk variants. Intriguingly, a number of cellular pathways have emerged from these analysis as playing central roles in the aetiopathogenesis of Parkinson's. In this review, the impact of data deriving from genome-wide analyses for Parkinson's upon our functional understanding of the disease will be examined, with a particular focus on examples of endo-lysosomal and mitochondrial dysfunction. The challenges of moving from a genetic to a functional understanding of common risk variants for Parkinson's will be discussed, with a final consideration of the current state of the genetic architecture of the disorder. This article is part of a discussion meeting issue 'Understanding the endo-lysosomal network in neurodegeneration'.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Estudo de Associação Genômica Ampla , Predisposição Genética para Doença , Fatores de Risco , Lisossomos/genética , Lisossomos/metabolismo , Lisossomos/patologia
3.
Philos Trans R Soc Lond B Biol Sci ; 379(1899): 20220381, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38368939

RESUMO

Impairment of autophagic-lysosomal pathways is increasingly being implicated in Parkinson's disease (PD). GBA1 mutations cause the lysosomal storage disorder Gaucher disease (GD) and are the commonest known genetic risk factor for PD. GBA1 mutations have been shown to cause autophagic-lysosomal impairment. Defective autophagic degradation of unwanted cellular constituents is associated with several pathologies, including loss of normal protein homeostasis, particularly of α-synuclein, and innate immune dysfunction. The latter is observed both peripherally and centrally in PD and GD. Here, we will discuss the mechanistic links between autophagy and immune dysregulation, and the possible role of these pathologies in communication between the gut and brain in these disorders. Recent work in a fly model of neuronopathic GD (nGD) revealed intestinal autophagic defects leading to gastrointestinal dysfunction and immune activation. Rapamycin treatment partially reversed the autophagic block and reduced immune activity, in association with increased survival and improved locomotor performance. Alterations in the gut microbiome are a critical driver of neuroinflammation, and studies have revealed that eradication of the microbiome in nGD fly and mouse models of PD ameliorate brain inflammation. Following these observations, lysosomal-autophagic pathways, innate immune signalling and microbiome dysbiosis are discussed as potential therapeutic targets in PD and GD. This article is part of a discussion meeting issue 'Understanding the endo-lysosomal network in neurodegeneration'.


Assuntos
Doença de Gaucher , Doença de Parkinson , Animais , Camundongos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Doença de Gaucher/tratamento farmacológico , Doença de Gaucher/genética , Doença de Gaucher/metabolismo , Autofagia/genética , Lisossomos/genética , Lisossomos/metabolismo , Lisossomos/patologia , Descoberta de Drogas , Imunidade Inata
4.
Int Urol Nephrol ; 56(2): 467-473, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37777637

RESUMO

BACKGROUND: Paneth cell-like granules (PCLG) in clear cell renal cell carcinomas (RCC) have previously been reported but were not found to express neuroendocrine markers. This study was to investigate if the eosinophilic granules (so called PCLG) were enlarged lysosomes. METHODS: A retrospective review of 72 different renal tumors was conducted which included 42 clear cell RCC, 16 papillary RCC, 6 chromophobe RCC, 5 clear cell papillary RCC, 2 urothelial carcinomas and 1 unclassified RCC. All tumors were evaluated for the eosinophilic granules on hematoxylin and eosin-stained sections. In addition, PAS-D staining, immunohistochemical stains, and electron microscopy were performed. RESULTS: The eosinophilic granules were found in 19% (8 out of 42) clear cell RCC, but not in the other renal tumor types. The granules stained positively for PAS-D and were also positive for lysosomal protein markers CD68 and lysozyme. Electron microscopy revealed that the eosinophilic granules were smooth ball-shaped structures in the cytoplasm, ranging in size from 0.8 to 1.4 µm. The overall findings indicate that the eosinophilic granules were best correlated with lysosomes. CONCLUSIONS: The eosinophilic granules in clear cell RCC are expanded lysosomes, and this may be used as a unique feature for confirming the pathologic diagnosis of clear cell RCC. The findings further support the view that clear cell RCC have phagocytic capacity due to their containing abundant lysosomes in the cytoplasm.


Assuntos
Carcinoma de Células Renais , Carcinoma de Células de Transição , Neoplasias Renais , Humanos , Carcinoma de Células Renais/patologia , Imuno-Histoquímica , Neoplasias Renais/patologia , Lisossomos/metabolismo , Lisossomos/patologia , Biomarcadores Tumorais
5.
J Neurol ; 271(3): 1277-1285, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37917233

RESUMO

Increasing evidence implicates endo-lysosomal dysfunction in frontotemporal dementia (FTD). 18 proteins were quantified using a mass spectrometry assay panel in the cerebrospinal fluid of 36 people with the language variant of FTD, primary progressive aphasia (PPA) (including 13 with non-fluent variant (nfvPPA), 11 with semantic variant (svPPA), and 12 with logopenic variant (lvPPA)) and 19 healthy controls. The concentrations of the cathepsins (B, D, F, L1, and Z) as well as AP-2 complex subunit beta, ganglioside GM2 activator, beta-hexosaminidase subunit beta, tissue alpha L-fucosidase, and ubiquitin were decreased in nfvPPA compared with controls. In contrast, the concentrations of amyloid beta A4 protein, cathepsin Z, and dipeptidyl peptidase 2 were decreased in svPPA compared with controls. No proteins were abnormal in lvPPA. These results indicate a differential alteration of lysosomal proteins in the PPA variants, suggesting those with non-Alzheimer's pathologies are more likely to show abnormal lysosomal function.


Assuntos
Afasia Primária Progressiva , Demência Frontotemporal , Humanos , Peptídeos beta-Amiloides , Idioma , Lisossomos/patologia
6.
Trends Pharmacol Sci ; 45(1): 81-101, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38102020

RESUMO

Many aspects of cell homeostasis and integrity are maintained by the nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) family pyrin domain-containing 3 (NLRP3) inflammasome. The NLRP3 oligomeric protein complex assembles in response to exogenous and endogenous danger signals. This inflammasome has also been implicated in the pathogenesis of a range of disease conditions, particularly chronic inflammatory diseases. Given that NLRP3 modulates autophagy, which is also a key regulator of inflammasome activity, excessive inflammation may be controlled by targeting this intersecting pathway. However, specific niche areas of NLRP3-autophagy interactions and their reciprocal regulatory mechanisms remain underexplored. Consequently, we lack treatment methods specifically targeting this pivotal axis. Here, we discuss the potential of such strategies in the context of autoimmune and metabolic diseases and propose some research avenues.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Humanos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Autofagia , Inflamação/metabolismo , Lisossomos/metabolismo , Lisossomos/patologia
7.
Am J Physiol Cell Physiol ; 326(2): C473-C486, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38145298

RESUMO

Despite years of study and major research advances over the past 50 years, atherosclerotic diseases continue to rank as the leading global cause of death. Accumulation of cholesterol within the vascular wall remains the main problem and represents one of the early steps in the development of atherosclerotic lesions. There is a complex relationship between vesicular cholesterol transport and atherosclerosis, and abnormalities in cholesterol trafficking can contribute to the development and progression of the lesions. The dysregulation of vesicular cholesterol transport and lysosomal function fosters the buildup of cholesterol within various intracytoplasmic compartments, including lysosomes and lipid droplets. This, in turn, promotes the hallmark formation of foam cells, a defining feature of early atherosclerosis. Multiple cellular processes, encompassing endocytosis, exocytosis, intracellular trafficking, and autophagy, play crucial roles in influencing foam cell formation and atherosclerotic plaque stability. In this review, we highlight recent advances in the understanding of the intricate mechanisms of vesicular cholesterol transport and its relationship with atherosclerosis and discuss the importance of understanding these mechanisms in developing strategies to prevent or treat this prevalent cardiovascular disease.


Assuntos
Aterosclerose , Placa Aterosclerótica , Humanos , Aterosclerose/patologia , Colesterol , Placa Aterosclerótica/complicações , Placa Aterosclerótica/patologia , Células Espumosas/patologia , Lisossomos/patologia
8.
Cell Rep ; 42(12): 113573, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38096054

RESUMO

Huntington's disease (HD) usually causes cognitive disorders, including learning difficulties, that emerge before motor symptoms. Mutations related to lysosomal trafficking are linked to the pathogenesis of neurological diseases, whereas the cellular mechanisms remain elusive. Here, we discover a reduction in the dendritic density of lysosomes in the hippocampus that correlates with deficits in synaptic plasticity and spatial learning in early CAG-140 HD model mice. We directly manipulate intraneuronal lysosomal positioning with light-induced CRY2:CIB1 dimerization and demonstrate that lysosomal abundance in dendrites positively modulates long-term potentiation of glutamatergic synapses onto the neuron. This modulation depends on lysosomal Ca2+ release, which further promotes endoplasmic reticulum (ER) entry into spines. Importantly, optogenetically restoring lysosomal density in dendrites rescues the synaptic plasticity deficit in hippocampal slices of CAG-140 mice. Our data reveal dendritic lysosomal density as a modulator of synaptic plasticity and suggest a role of lysosomal mispositioning in cognitive decline in HD.


Assuntos
Doença de Huntington , Camundongos , Animais , Doença de Huntington/genética , Plasticidade Neuronal/fisiologia , Neurônios/patologia , Hipocampo/patologia , Sinapses/patologia , Lisossomos/patologia , Dendritos/patologia , Espinhas Dendríticas/patologia
9.
Nature ; 623(7989): 1062-1069, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37968398

RESUMO

Endomembrane damage represents a form of stress that is detrimental for eukaryotic cells1,2. To cope with this threat, cells possess mechanisms that repair the damage and restore cellular homeostasis3-7. Endomembrane damage also results in organelle instability and the mechanisms by which cells stabilize damaged endomembranes to enable membrane repair remains unknown. Here, by combining in vitro and in cellulo studies with computational modelling we uncover a biological function for stress granules whereby these biomolecular condensates form rapidly at endomembrane damage sites and act as a plug that stabilizes the ruptured membrane. Functionally, we demonstrate that stress granule formation and membrane stabilization enable efficient repair of damaged endolysosomes, through both ESCRT (endosomal sorting complex required for transport)-dependent and independent mechanisms. We also show that blocking stress granule formation in human macrophages creates a permissive environment for Mycobacterium tuberculosis, a human pathogen that exploits endomembrane damage to survive within the host.


Assuntos
Endossomos , Membranas Intracelulares , Lisossomos , Macrófagos , Grânulos de Estresse , Humanos , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Endossomos/metabolismo , Endossomos/microbiologia , Endossomos/patologia , Membranas Intracelulares/metabolismo , Membranas Intracelulares/microbiologia , Membranas Intracelulares/patologia , Lisossomos/metabolismo , Lisossomos/microbiologia , Lisossomos/patologia , Mycobacterium tuberculosis/metabolismo , Grânulos de Estresse/metabolismo , Técnicas In Vitro , Macrófagos/metabolismo , Macrófagos/microbiologia , Macrófagos/patologia
10.
J Transl Med ; 21(1): 730, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37848935

RESUMO

BACKGROUND: Lysosomes are closely linked to autophagic activity, which plays a vital role in pancreatic ductal adenocarcinoma (PDAC) biology. The survival of PDAC patients is still poor, and the identification of novel genetic factors for prognosis and treatment is highly required to prevent PDAC-related deaths. This study investigated the germline variants related to lysosomal dysfunction in patients with PDAC and to analyze whether they contribute to the development of PDAC. METHODS: The germline putative pathogenic variants (PPV) in genes involved in lysosomal storage disease (LSD) was compared between patients with PDAC (n = 418) and healthy controls (n = 845) using targeted panel and whole-exome sequencing. Furthermore, pancreatic organoids from wild-type and KrasG12D mice were used to evaluate the effect of lysosomal dysfunction on PDAC development. RNA sequencing (RNA-seq) analysis was performed with established PDAC patient-derived organoids (PDOs) according to the PPV status. RESULTS: The PPV in LSD-related genes was higher in patients with PDAC than in healthy controls (8.13 vs. 4.26%, Log2 OR = 1.65, P = 3.08 × 10-3). The PPV carriers of LSD-related genes with PDAC were significantly younger than the non-carriers (mean age 61.5 vs. 65.3 years, P = 0.031). We further studied a variant of the lysosomal enzyme, galactosylceramidase (GALC), which was the most frequently detected LSD variant in our cohort. Autophagolysosomal activity was hampered when GALC was downregulated, which was accompanied by paradoxically elevated autophagic flux. Furthermore, the number of proliferating Ki-67+ cells increased significantly in pancreatic organoids derived from Galc knockout KrasG12D mice. Moreover, GALC PPV carriers tended to show drug resistance in both PDAC cell line and PDAC PDO, and RNA-seq analysis revealed that various metabolism and gene repair pathways were upregulated in PDAC PDOs harboring a GALC variant. CONCLUSIONS: Genetically defined lysosomal dysfunction is frequently observed in patients with young-onset PDAC. This might contribute to PDAC development by altering metabolism and impairing autophagolysosomal activity, which could be potentially implicated in therapeutic applications for PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Camundongos , Animais , Pessoa de Meia-Idade , Proteínas Proto-Oncogênicas p21(ras) , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Células Germinativas/metabolismo , Lisossomos/metabolismo , Lisossomos/patologia , Neoplasias Pancreáticas
11.
Hypertension ; 80(12): 2674-2686, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37846580

RESUMO

BACKGROUND: Cardiac hypertrophy and subsequent heart failure impose a considerable burden on public health worldwide. Impaired protein degradation, especially endo-lysosome-mediated degradation of membrane proteins, is associated with cardiac hypertrophy progression. CHMP4C (charged multivesicular body protein 4C), a critical constituent of multivesicular bodies, is involved in cellular trafficking and signaling. However, the specific role of CHMP4C in the progression of cardiac hypertrophy remains largely unknown. METHODS: Mouse models with CHMP4C knockout or cardiadc-specific overexpression were subjected to transverse aortic constriction surgery for 4 weeks. Cardiac morphology and function were assessed through histological staining and echocardiography. Confocal imaging and coimmunoprecipitation assays were performed to identify the direct target of CHMP4C. An EGFR (epidermal growth factor receptor) inhibitor was administrated to determine whether effects of CHMP4C on cardiac hypertrophy were EGFR dependent. RESULTS: CHMP4C was significantly upregulated in both pressure-overloaded mice and spontaneously hypertensive rats. Compared with wild-type mice, CHMP4C deficiency exacerbated transverse aortic constriction-induced cardiac hypertrophy, whereas CHMP4C overexpression in cardiomyocytes attenuated cardiac dysfunction. Mechanistically, the effect of CHMP4C on cardiac hypertrophy relied on the EGFR signaling pathway. Fluorescent staining and coimmunoprecipitation assays confirmed that CHMP4C interacts directly with EGFR and promotes lysosome-mediated degradation of activated EGFR, thus attenuating cardiac hypertrophy. Notably, an EGFR inhibitor canertinib counteracted the exacerbation of cardiac hypertrophy induced by CHMP4C knockdown in vitro and in vivo. CONCLUSIONS: CHMP4C represses cardiac hypertrophy by modulating lysosomal degradation of EGFR and is a potential therapeutic candidate for cardiac hypertrophy.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte , Insuficiência Cardíaca , Ratos , Camundongos , Animais , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Cardiomegalia/metabolismo , Insuficiência Cardíaca/metabolismo , Receptores ErbB , Miócitos Cardíacos/metabolismo , Lisossomos/metabolismo , Lisossomos/patologia , Camundongos Knockout , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
12.
Cell Rep ; 42(8): 112910, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37531255

RESUMO

Amino acid (aa) metabolism is closely correlated with the pathogenesis of psoriasis; however, details on aa transportation during this process are barely known. Here, we find that SLC38A5, a sodium-dependent neutral aa transporter that counter-transports protons, is markedly upregulated in the psoriatic skin of both human patients and mouse models. SLC38A5 deficiency significantly ameliorates the pathogenesis of psoriasis, indicating a pathogenic role of SLC38A5. Surprisingly, SLC38A5 is almost exclusively expressed in dendritic cells (DCs) when analyzing the psoriatic lesion and mainly locates on the lysosome. Mechanistically, SLC38A5 potentiates lysosomal acidification, which dictates the cleavage and activation of TLR7 with ensuing production of pro-inflammatory cytokines such as interleukin-23 (IL-23) and IL-1ß from DCs and eventually aggravates psoriatic inflammation. In summary, this work uncovers an auxiliary mechanism in driving lysosomal acidification, provides inspiring insights for DC biology and psoriasis etiology, and reveals SLC38A5 as a promising therapeutic target for treating psoriasis.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros , Psoríase , Animais , Camundongos , Humanos , Células Dendríticas/metabolismo , Pele/patologia , Psoríase/patologia , Inflamação/patologia , Modelos Animais de Doenças , Lisossomos/patologia , Concentração de Íons de Hidrogênio
13.
Neoplasia ; 43: 100924, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37562257

RESUMO

Cutaneous melanoma is the deadliest form of skin neoplasm and its high mortality rates could be averted by early accurate detection. While the detection of melanoma is currently reliant upon melanin visualisation, research into melanosome biogenesis, as a key driver of pathogenesis, has not yielded technology that can reliably distinguish between atypical benign, amelanotic and melanotic lesions. The endosomal-lysosomal system has important regulatory roles in cancer cell biology, including a specific functional role in melanosome biogenesis. Herein, the involvement of the endosomal-lysosomal system in melanoma was examined by pooled secondary analysis of existing gene expression datasets. A set of differentially expressed endosomal-lysosomal genes was identified in melanoma, which were interconnected by biological function. To illustrate the protein expression of the dysregulated genes, immunohistochemistry was performed on samples from patients with cutaneous melanoma to reveal candidate markers. This study demonstrated the dysregulation of Syntenin-1, Sortilin and Rab25 may provide a differentiating feature between cutaneous melanoma and squamous cell carcinoma, while IGF2R may indicate malignant propensity in these skin cancers.


Assuntos
Carcinoma de Células Escamosas , Melanoma , Neoplasias Cutâneas , Humanos , Melanoma/patologia , Neoplasias Cutâneas/patologia , Carcinoma de Células Escamosas/patologia , Lisossomos/genética , Lisossomos/patologia , Proteínas rab de Ligação ao GTP
14.
Cell Mol Neurobiol ; 43(7): 3251-3263, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37382853

RESUMO

The abnormal initiation of autophagy flux in neurons after ischemic stroke caused dysfunction of autophagy-lysosome, which not only led to autophagy flux blockage, but also resulted in autophagic death of neurons. However, the pathological mechanism of neuronal autophagy-lysosome dysfunction did not form a unified viewpoint until now. In this review, taking the autophagy lysosomal dysfunction of neurons as a starting point, we summarized the molecular mechanisms that led to neuronal autophagy lysosomal dysfunction after ischemic stroke, which would provide theoretical basis for the clinical treatment of ischemic stroke.


Assuntos
Autofagia , AVC Isquêmico , Lisossomos , AVC Isquêmico/metabolismo , AVC Isquêmico/patologia , AVC Isquêmico/terapia , Humanos , Animais , Neurônios/metabolismo , Neurônios/patologia , Lisossomos/patologia , Reperfusão , Proteínas do Tecido Nervoso/metabolismo
15.
PLoS Pathog ; 19(5): e1011388, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37167325

RESUMO

There is a growing consensus that a significant proportion of recurrent urinary tract infections are linked to the persistence of uropathogens within the urinary tract and their re-emergence upon the conclusion of antibiotic treatment. Studies in mice and human have revealed that uropathogenic Escherichia coli (UPEC) can persist in bladder epithelial cells (BECs) even after the apparent resolution of the infection. Here, we found that, following the entry of UPEC into RAB27b+ fusiform vesicles in BECs, some bacteria escaped into the cytoplasmic compartment via a mechanism involving hemolysin A (HlyA). However, these UPEC were immediately recaptured within LC3A/B+ autophagosomes that matured into LAMP1+ autolysosomes. Thereafter, HlyA+ UPEC-containing lysosomes failed to acidify, which is an essential step for bacterial elimination. This lack of acidification was related to the inability of bacteria-harboring compartments to recruit V-ATPase proton pumps, which was attributed to the defragmentation of cytosolic microtubules by HlyA. The persistence of UPEC within LAMP1+ compartments in BECs appears to be directly linked to HlyA. Thus, through intravesicular instillation of microtubule stabilizer, this host defense response can be co-opted to reduce intracellular bacterial burden following UTIs in the bladder potentially preventing recurrence.


Assuntos
Infecções por Escherichia coli , Infecções Urinárias , Escherichia coli Uropatogênica , Animais , Camundongos , Humanos , Bexiga Urinária/microbiologia , Escherichia coli Uropatogênica/fisiologia , Proteínas Hemolisinas , Infecções por Escherichia coli/microbiologia , Infecções Urinárias/microbiologia , Células Epiteliais/microbiologia , Lisossomos/patologia , Concentração de Íons de Hidrogênio
16.
J Pharmacol Sci ; 152(3): 182-192, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37257946

RESUMO

Missense mutations of ubiquilin 2 (UBQLN2) have been identified to cause X-linked amyotrophic lateral sclerosis (ALS). Proteasome-mediated protein degradation is reported to be impaired by ALS-associated mutations of UBQLN2. However, it remains unknown how these mutations affect autophagy-lysosome protein degradation, which consists of macroautophagy (MA), microautophagy (mA), and chaperone-mediated autophagy (CMA). Using a CMA/mA fluorescence reporter we found that overexpression of wild-type UBQLN2 impairs CMA. Conversely, knockdown of endogenous UBQLN2 increases CMA activity, suggesting that normally UBQLN2 negatively regulates CMA. ALS-associated mutant forms of UBQLN2 exacerbate this impairment of CMA. Using cells stably transfected with wild-type or ALS-associated mutant UBQLN2, we further determined that wild-type UBQLN2 increased the ratio of LAMP2A (a CMA-related protein) to LAMP1 (a lysosomal protein). This could represent a compensatory reaction to the impairment of CMA by wild-type UBQLN2. However, ALS-associated mutant UBQLN2 failed to show this compensation, exacerbating the impairment of CMA by mutant UBQLN2. We further demonstrated that ALS-associated mutant forms of UBQLN2 also impair MA, but wild-type UBQLN2 does not. These results support the view that ALS-associated mutant forms of UBQLN2 impair both CMA and MA which may contribute to the neurodegeneration observed in patients with UBQLN2-mediated ALS.


Assuntos
Esclerose Amiotrófica Lateral , Humanos , Esclerose Amiotrófica Lateral/genética , Esclerose Amiotrófica Lateral/metabolismo , Esclerose Amiotrófica Lateral/patologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Autofagia/genética , Mutação , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Fatores de Transcrição/metabolismo , Lisossomos/metabolismo , Lisossomos/patologia
17.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 40(6): 711-717, 2023 Jun 10.
Artigo em Chinês | MEDLINE | ID: mdl-37212008

RESUMO

OBJECTIVE: To explore the clinical features, lysosomal enzymatic [acid α-glucosidase (GAA)] activities and genetic variants in a child with late-onset Pompe disease (LOPD). METHODS: Clinical data of a child who had presented at the Genetic Counseling Clinic of West China Second University Hospital in August 2020 was retrospectively analyzed. Blood samples were collected from the patient and her parents for the isolation of leukocytes and lymphocytes as well as DNA extraction. The activity of lysosomal enzyme GAA in leukocytes and lymphocytes was analyzed with or without addition of inhibitor of GAA isozyme. Potential variants in genes associated with neuromuscular disorders were analyzed, in addition with conservation of the variant sites and protein structure. The remaining samples from 20 individuals undergoing peripheral blood lymphocyte chromosomal karyotyping were mixed and used as the normal reference for the enzymatic activities. RESULTS: The child, a 9-year-old female, had featured delayed language and motor development from 2 years and 11 months. Physical examination revealed unstable walking, difficulty in going upstairs and obvious scoliosis. Her serum creatine kinase was significantly increased, along with abnormal electromyography, whilst no abnormality was found by cardiac ultrasound. Genetic testing revealed that she has harbored compound heterozygous variants of the GAA gene, namely c.1996dupG (p.A666Gfs*71) (maternal) and c.701C>T (p.T234M) (paternal). Based on the guidelines from the American College of Medical Genetics and Genomics, the c.1996dupG (p.A666Gfs*71) was rated as pathogenic (PVS1+PM2_Supporting+PM3), whilst the c.701C>T (p.T234M) was rated as likely pathogenic (PM1+PM2_Supporting+PM3+PM5+PP3). The GAA in the leukocytes from the patient, her father and mother were respectively 76.1%, 91.3% and 95.6% of the normal value without the inhibitor, and 70.8%, 112.9% and 128.2% of the normal value with the inhibitor, whilst the activity of GAA in their leukocytes had decreased by 6 ~ 9 times after adding the inhibitor. GAA in lymphocytes of the patient, her father and mother were 68.3%, 59.0% and 59.5% of the normal value without the inhibitor, and 41.0%, 89.5% and 57.7% of the normal value with the inhibitor, the activity of GAA in lymphocytes has decreased by 2 ~ 5 times after adding the inhibitor. CONCLUSION: The child was diagnosed with LOPD due to the c.1996dupG and c.701C>T compound heterozygous variants of the GAA gene. The residual activity of GAA among LOPD patients can range widely and the changes may be atypical. The diagnosis of LOPD should not be based solely on the results of enzymatic activity but combined clinical manifestation, genetic testing and measurement of enzymatic activity.


Assuntos
Doença de Depósito de Glicogênio Tipo II , Humanos , Criança , Masculino , Feminino , Doença de Depósito de Glicogênio Tipo II/genética , Doença de Depósito de Glicogênio Tipo II/diagnóstico , Doença de Depósito de Glicogênio Tipo II/patologia , Estudos Retrospectivos , alfa-Glucosidases/genética , Mães , Lisossomos/patologia , Mutação
18.
BMC Res Notes ; 16(1): 53, 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37069668

RESUMO

OBJECTIVE: The study of the impact of some inherited defects in glycosylation on the biosynthesis of some lysosomal glycoproteins. Results description: Whole-exome sequencing revealed a homozygous variant; 428G > A; p. (R143K) in SRD5A3 in one patient and a heterozygous one c.46G > A p. (Gly16Arg) in SLC35A2 in the other patient. Both variants were predicted to be likely pathogenic. Lysosome-associated membrane glycoprotein 2 (LAMP2) immunodetection in both cases showed a truncated form of the protein. Cystinosin (CTN) protein appeared as normal and truncated forms in both patients in ratios of the mature to truncated forms of CTN were lower than the control. The levels of the truncated forms of both cellular proteins were higher in the SRD5A3-CDG case compared to the SLC35A2-CDG case. The tetrameric form of cathepsin C (CTSC) was expressed at low levels in both cases with congenital disorder of glycosylation (CDG). SLC35A2-CDG patient had one extra-unknown band while SRD5A3-CDG patient had a missing band of CTSC forms. The expression patterns of lysosomal glycoproteins could be different between different types of CDG.


Assuntos
Defeitos Congênitos da Glicosilação , Humanos , Glicosilação , Defeitos Congênitos da Glicosilação/genética , Defeitos Congênitos da Glicosilação/diagnóstico , Defeitos Congênitos da Glicosilação/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Homozigoto , Lisossomos/metabolismo , Lisossomos/patologia , Mutação
19.
Arthritis Rheumatol ; 75(9): 1586-1598, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37096570

RESUMO

OBJECTIVE: Lysosome-associated membrane protein 3 (LAMP3) overexpression is implicated in the development and progression of Sjögren's disease (SjD) by inducing lysosomal membrane permeabilization (LMP) and apoptotic cell death in salivary gland epithelium. The aim of this study was to clarify the molecular details of LAMP3-induced lysosome-dependent cell death and to test lysosomal biogenesis as a therapeutic intervention. METHODS: Human labial minor salivary gland biopsies were analyzed using immunofluorescence staining for LAMP3 expression levels and galectin-3 puncta formation, a marker of LMP. Expression level of caspase 8, an initiator of LMP, was determined by Western blotting in cell culture. Galectin-3 puncta formation and apoptosis were evaluated in cell cultures and a mouse model treated with glucagon-like peptide 1 receptor (GLP-1R) agonists, a known promoter of lysosomal biogenesis. RESULTS: Galectin-3 puncta formation was more frequent in the salivary glands of SjD patients compared to control glands. The proportion of galectin-3 puncta-positive cells was positively correlated with LAMP3 expression levels in the glands. LAMP3 overexpression increased caspase 8 expression, and knockdown of caspase 8 decreased galectin-3 puncta formation and apoptosis in LAMP3-overexpressing cells. Inhibition of autophagy increased caspase 8 expression, while restoration of lysosomal function using GLP-1R agonists decreased caspase 8 expression, which reduced galectin-3 puncta formation and apoptosis in both LAMP3-overexpressing cells and mice. CONCLUSION: LAMP3 overexpression induced lysosomal dysfunction, resulting in lysosome-dependent cell death via impaired autophagic caspase 8 degradation, and restoring lysosomal function using GLP-1R agonists could prevent this. These findings suggested that LAMP3-induced lysosomal dysfunction is central to disease development and is a target for therapeutic intervention in SjD.


Assuntos
Galectina 3 , Síndrome de Sjogren , Animais , Humanos , Camundongos , Autofagia , Caspase 8/metabolismo , Morte Celular , Galectina 3/metabolismo , Lisossomos/metabolismo , Lisossomos/patologia , Glândulas Salivares/metabolismo , Síndrome de Sjogren/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...